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Abstract

Throughout the years, many attempts have been made at
creating music procedurally. However, very few of those
attempts were concerned with the actual “meaning” of
the music that was generated. The goal of this research
is to implement a pipelined model of neural networks
capable of generating homophonic music without input.
The generated music should be “meaningful”, that is to
say, it should sound like it has a purpose. This is similar
to how a human composer would write music. This idea
of “meaning” makes a composition tell a story or express
feelings. This is the reason humans write music, as well
as create other forms of arts. As the goal of artificial
creativity is to approach human creativity as close as
possible, Artificial Intelligence should try to imitate
humans as close as possible. Therefore, it is important
for a music generating AI to understand “meaning” in
music. In order to introduce meaning in AI composition,
the process is approached step-by-step. Dedicated neural
models trained on melodies that express purpose through
the use of motifs are first used to generate a melody. That
melody serves as input to another neural model, trained
on chord progressions that contextualize the melodies
they accompany, to generate harmony. Besides the
model being symbolic, there are no musical constraints
or guidelines for generation. By using this pipelined but
unconstrained approach, it is possible to procedurally
generate music that sounds as if composed by a human
being.

1 Introduction

To define “meaning” in music, it is first necessary to
identify its key components. In modern western music,
those components are melody, harmony, and rhythm [1].
A melody is a linear succession of notes, that can be

seen as a combination of pitch and rhythm. It usually
consists of motifs, which are small musical phrases [2],
used to convey an idea. Melody is generally seen as
the “horizontal” aspect of music [3]: the relationship
between notes across time. Conversely, harmony is seen
as the “vertical” aspect of music [3]: it is the relationship
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between multiple notes at the same time. This is usually
represented in music as chords [4]. Harmony is used in
composition to give a melody context, in the form of a
chord progression [5].

Rhythm in music is defined as the timing of events
on a human scale. More specifically, this means rhythm
governs the timing of notes in a musical composition.
This is usually represented as two things. The first one
is a tempo, which is the number of beats per minute
(a beat being the basic unit of time in music [6]), and
the second one is a time signature, which is the number
of beats per measure. From these definitions, we can
already deduce that rhythm is implied by melody, as the
latter is strongly related to time. Therefore, rhythm as
a musical component is not what gives a musical piece
its “meaning”. Furthermore, we can also deduce that
harmony exists to support a melody, as it gives it context.
Thus, it appears as evident that the most important
musical component in giving a musical piece its identity
and its “meaning” is the melody, as the other components
revolve around it.

Therefore, it becomes necessary to understand what
makes a melody. As we have already defined, a melody
consists of motifs, which are short successions of notes.
Those motifs can have variations, which for the purpose
of this research can be defined as small changes to those
motifs (either in pitch or in rhythm). By using motifs
and variations, a melody can be given purpose. It can
tell a story, and is therefore given meaning.

In order to approach composition procedurally, it
is necessary to separate the composition process into
several sub-processes. For the purpose of this research,
this can be summarized into two elements: melody
generation and harmony generation. Melody generation
should be done using a seed obtained by randomly
sampling from a distribution, which means that no initial
input is required. It should also be set to a fixed number
of measures, so that it can be repeated, and used for
harmony generation. The harmony generation process
should generate a chord progression that effectively
supports a generated melody, using that melody as input
data.

This approach to the composition process is rather
standard and is the simplest way of composing music
[7]. Therefore, music composed in such a manner would
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be akin to that of a human composer, while the process
of composition itself remains simple.
It now becomes necessary to determine what kind

of music should be used as training data for the
Artificial Intelligence. Since the most important feature
is meaning, it should be music that uses motifs in the
most effective way possible. Such use of motifs is usually
found in video game music, or movie scores. This is
due to the necessity in such genres to represent ideas,
characters, or locations. By using motifs to compose a
meaningful melody, a composer can represent the story
of a video game or a movie as music. It is also necessary
to have harmony (in the form of a chord progression)
that supports the melody, to give it context, which helps
in telling that story.
Therefore, the training data should consist of such

genres of music, and have both melody and harmony.
Furthermore, it should be possible to separate the
melody and the harmony to train two separate AI
models, one specializing in melody generation, and the
other in harmony generation. In addition, the music
data should be high-level symbolic representations, since
a discrete representation of music data is necessary for
the model to learn the underlying relationships between
notes. To this end, the MIDI format is used for input
and output in this research.
Three datasets have been used in this research so

far: The Nottingham dataset, consisting of around 1000
folk songs in MIDI format, with one track for melody
and one for harmony. This dataset is not video game
music or movie score, but it was still useful in studying
relationships between melody and harmony.
The second dataset, which was used to train the models
for eventual data generation, consists of only around 20
manually transcribed pieces (with melody and harmony),
mostly from video game soundtrack.
The third dataset, which is currently being used, is the
TheoryTab Database (video game), consisting of around
2000 tunes from video game soundtrack in MIDI format,
with melody and harmony on separate tracks.

2 Existing research

The existing research in music generation by AI has so far
only consisted, when it was not mere single-line melody
generation, in approaching the overall music composition
problem in a polyphonic manner [8, 9], without any
real attempt at focusing on any sense of purpose in
the generated music. In our research, a homophonic
approach is preferred, where the melody is generated
first.
Most previous research, in the case of homophonic

music generation, used chord progressions as input
for melody generation. In that research, the chord
progression is either pre-written by humans [10, 11], or
has to be generated by the model [13].
Generating a chord progression is merely a complication

of the task of melody generation, and in the previously
mentioned research, the training and generation
processes are in fact constrained by a structure of music
theory, such as the 12 bar blues format.
Our research uses a text generation approach for melody
generation. Although such an approach has been used
before, it has been done using arbitrary notation systems,
such as the ABC system, as mentioned in [14], where
the text data does not directly represent the music.
The melody generation approach in our research focuses
on the horizontal aspect of melody in music by using
individual characters as units of note duration.

As previously explained, most research where
generating harmony is necessary as a process do so as a
sort of melody generation: the chords are generated over
time, and determine the structure of the generated music.
In our research, harmony is considered a secondary
aspect of music: it serves only the purpose of giving
a context to a melody. As such, the idea of chord
“progression” is never considered, and the chords for
a given melody are generated independently from one
another, depending solely on the melody.

Finally, in most of the previous research, the chosen
method of data representation is that of absolute pitches.
This is due mostly to the ability to perform data
augmentation if necessary (by simply shifting the key
of every individual piece to all 12 notes of the chromatic
scale). Although a delta relative approach of music data
representation has been used before in this field [14],
where the current note is expressed as its difference in
semitones with the previous one, that relative approach
still does not make implicit patterns such as motifs and
variations explicit enough for the model to learn them.
In our research, we use intervals relative to the key for
data representation. Such relative intervals completely
remove the context of key in the data, meaning the pieces
are all uniformized. Not only does this naturally provide
more data for implicit patterns, but it also makes them
more explicit themselves in the data.

3 Method

3.1 Representation of music data

To represent music data, intervals relative to the key of
the musical piece were chosen, instead of using absolute
pitch representation. This is akin to movable do solfège,
where each degree in the musical scale is expressed as a
different syllable (i.e. Do, Di, Ra, Re, etc.).

Figure 1. Kinds of music data representation.



The main reason for choosing this representation is
that it makes the key of the musical piece irrelevant —
only the relationship between the different notes appears.
This in turn makes simpler patterns like intervals appear
explicitly in the training data, making the learning
of more complicated patterns, such as motifs, easier.
This is also preferable to a purely “delta relative”
representation, where each note is represented as the
number of semitones relative to the previous note. While
this method also makes key irrelevant, it has one major
issue if used for melody generation: when generating a
melody, should the model make a mistake and predict the
wrong interval, the rest of the generated music would be
in the shifted key [14].

The problem of using intervals relative to the key,
however, is that the key of the piece should be explicitly
given in the data, or determined algorithmically.While
there are many algorithms that attempt to determine the
key signature of a song [15], none of them are entirely
accurate in doing so. Furthermore, some pieces may
have several key changes at arbitrary points, making the
process even more difficult. The Nottingham dataset,
which was previously mentioned, explicitly indicates key
signatures in its data. The key signatures were also
encoded in the manually transcribed dataset. For the
TheoryTab dataset, as there are almost no key changes
in the individual MIDI files due to them being only
sections of a tune, a key finding algorithm is used (the
Krumhansl-Schmuckler algorithm). As it gives a list of
probabilities for each possible key, an “interpretation” of
a given section is kept for each key where that probability
is above a given threshold. This also provides a form of
data augmentation. The probability is used as a weight
during training.

The melody data is processed by the neural models
as text, with a single character representing one unit
of time. This allows for direct representation of note
duration within the time dimension of the model. The
first unicode character outside the ASCII range, “Ā”, is
used to represent one unit of time.

Figure 2. Example of a note represented as text.

Choosing such a short triplet as a unit allows for even
division of other bigger binary and ternary durations.
As for chords, they are represented using their root,
relative to the key, along with their quality. To this end,
a simple chord naming algorithm has been implemented,
which, similarly to what the key finding algorithm does,
gives a list of possible chord names for each set of notes,
along with an associated probability, used as a weight
during training.

3.2 The Neural models

The kind of neural model chosen for implementation is
a Recurrent Neural Network (RNN). This is because
RNNs have great flexibility in learning complex patterns
in musical data, thanks to their effectiveness at modeling
temporal patterns [12]. This effectiveness with temporal
sequences is due to their use of feedback loops and/or
memory units to retain information over time during
training. Even more specifically, RNN architectures
such as Long Short-Term Memory (LSTM) or Gated
Recurrent Unit (GRU) are especially well suited to this
problem, as they can learn complex patterns across
several time steps [11, 12, 13].

For the actual melody and harmony generating models
implemented in this research, bidirectional LSTMs are
used, as they are able to access a more global context [16]
when training, which is necessary when composing music
since a given note depends on the notes both preceding
and following it. In order to implement the step-by-step
nature of the composition approach, the neural models
are arranged in a pipeline: the output of a given model
serves as input for the following one.

3.3 Melody generation

The process of melody generation is separated into two
smaller processes. The first one is seed generation, where
an LSTM trained on melodies is used to generate a seed
by sampling data randomly from its latent distribution.
The second one is the actual melody generation, using
a bidirectional LSTM trained on the same melodies to
generate a melody from the previously generated seed.
Due to the small amount of training data available with
the second dataset, an algorithm that extracts the outline
of melodies has been implemented. It is used to extract
the outlines of the melodies used for training the melody
generator. The extracted outlines are used as additional
training data.

The training data consists of melodies in MIDI format.
The melody notes are converted into intervals, with each
interval (one for each note) being a tuple consisting of
the relative scale degree (including pitch height) and the
time relative to the previous note. Each interval is then
converted into an ASCII character based on its value.
This is done for each “interpretation” of the melody.
Each melody is thus converted and added to the training
set, with a special character, “ā” (the second unicode
character outside the ASCII range), being used as a
delimiter between the melodies.

The melodies are split into sequences of 50 characters
overlapping each other, and converted into one-hot
vectors. A greater overlap is used for the seed generator
data (to provide more sequences), as the outlines are not
used for training in this case. The network is then trained
on those vectors for 15 epochs.
The following figure shows its topology.



Figure 3. Topology of the melody generator.

The topology of the seed generator is the same save
for the hidden layer, using a simple LSTM layer instead.
This seed generator is trained for 10 epochs. The output
is a prediction of the next character. The activation
function for the output layer is softmax.
The prediction process is repeated iteratively for the
desired length of the melody to be generated. In the
case of the seed generator, it is sampling from the latent
distribution of the data that is repeated iteratively. Once
the melody generation process is done, the predicted text
is converted back into intervals, then back into MIDI
format.

3.4 Harmony generation

To study the relationship between melody and harmony,
which is necessary to implement the harmony generator,
a simple GRU-based classifier was implemented to
label chord symbols to snippets of melodies from the
Nottingham dataset.
The training data consists of melody snippets labeled

with chord symbols. Each melody snippet consists of
notes represented as words, themselves consisting of the
time relative to the previous note (relative to the chord
in the case of the first note of the sequence), and the note
itself, represented as a relative scale degree, including its
pitch height.

Figure 4. Example of a melody snippet over a chord
represented as a sequence.

The input data consists of those sequences of notes,
vectorized as sequences of a maximum length of 50 words.
The vocabulary size of the vectorizer is 250 words. This

input is processed by a GRU layer consisting of 128
nodes. In this case, a GRU layer was used due to getting
better results than with an LSTM layer. The output is
a prediction of the chord symbol corresponding to the
input melody snippet. The activation function for the
output layer is softmax.

Once the relationship between melody and harmony
had been studied, and promising results obtained, the
harmony generator could be implemented.
The following figure shows the topology of the harmony
generating RNN.

Figure 5. Topology of the harmony generator.

As there are more chord labels than with the
previously used dataset, a bidirectional LSTM layer with
128 units is used this time. The principle is otherwise
exactly the same.

During generation, given a generated melody as input,
a pre-processing algorithm divides that melody into
snippets of around the same length: four quarter notes.
Those snippets are then used as the inputs for the
harmony generator, and a chord is predicted for each
one.

4 Evaluation of output

4.1 Overview of the training

Unless otherwise specified, the following training results
were obtained with the manually transcribed dataset of
around 20 pieces.

After training for 10 epochs on 74580 samples, the seed
generator reaches a loss of around 0.2. As for the melody
generator, it reaches a loss of around 0.12 after training
for 15 epochs on 98583 samples.

For the GRU-based classifier trained on the
Nottingham dataset, a validation accuracy of around
78% was reached for a training accuracy of around 83%
after training for 50 epochs.



Figure 6. Accuracy curve for the Nottingham classifier.

Although this suggests a slight overfitting, 78% is
still more than acceptable for predicting something as
arbitrary as a chord based on the melody it corresponds
to. Those results show promise for the harmony
generator. However, unlike the GRU-based chord
classifier, the harmony generator (bidirectional LSTM)
does not converge during training (the accuracy remains
at around 30%).

Figure 7. Accuracy curve for the harmony generator.

However, this is most likely due to there being a lot
of chord that are similar in feeling, but have a different
chord name. Chords such as C and CMaj7 are virtually
the same since the latter contains all the notes of the
former. Despite this issue, good results are still obtained
during generation. It will be addressed in the future in
the form of latent semantic analysis of the chord labels.

4.2 Subjective evaluation

All the pieces used for subjective evaluation were
generated after training with the small manually
transcribed dataset. The currently implemented model
has no notion of tempo, and generates pieces of a fixed
length (16 measures, assuming a tempo of 120bpm and
a time signature of 4/4).

The melody generation, despite not always being
consistent, still shows good results with interesting
melodic movement, use of motif and variation, as well as
melodic ornaments. Currently, the main issue of melody
generation is a lack of a sense of overall structure. Overall
structure in a melody is necessary for it to sound natural,
and serve an overall purpose.
The harmony generation is very satisfactory given the

current poor training results. Natural-sounding chord
progressions and cadences are obtained, despite the
model not knowing the previous chords when generating.
One issue of harmony generation lies in the rhythmic
consistency. As a time signature of 4/4 is assumed when
cutting a melody into snippets, the rhythm of the chord
progression gets gradually shifted relative to the melody.
This leads to some awkward pauses in the progression.
To conduct proper evaluation of generation results,

a survey using excerpts (of around 12 seconds) of 5
AI generated and 5 human-written pieces has been set
up. The 10 excerpts are arranged in 5 pairs; 1 excerpt
being from an AI generated piece and the other from a
human-composed piece. For each pair, the respondent
has to guess which one was generated by AI, and explain
their choice. Overall, with 8 respondents, some of whom
were musically trained, correct guesses amount to 50%
of the answers.
Some of the respondents who were able to guess

correctly said the melody sounded unnatural, or as
though the notes were randomly extracted from a
scale. There were, however, respondents who were
mislead, and had justified their choice by saying that
the human-written piece had melody notes that were
dissonant with the harmony, or that the melody was
using the same notes in a row.
Some also mentioned regularity in the melody of the AI
generated music as a deciding factor for choosing the
human-written piece. Most of the respondents who were
able to guess correctly mentioned the rhythm feeling
unnatural in one way or another: either there were
awkward pauses in the chord progression, or the melody
seemed ”out of rhythm”.
Despite the rhythm being the most evidential way to

discern the human-composed music from that generated
by the model, as there is no meter constraint for
generated melodies, it seems people who are not
musically trained would be less likely to notice this, and
therefore be more likely to be mislead.

5 Conclusion

The objective of this research was to implement
a machine learning model capable of generating
meaningful-sounding music without any initial input.
In this paper, a new approach for artificial

music composition is proposed. This approach is
homophonic, and is centered around the generation
of a single-line melody to which chords are found



individually. By focusing on the temporal aspect
of melody via character-level representation, then
contextualizing melodies through the use of chords, and
by using a key-irrelevant method of note representation,
it is possible to generate music that sounds meaningful at
times, as generated melodies make natural use of motifs
and variations, although there is still a certain lack of
overall purpose.

The melody generating model, despite not being
consistent overall in that regard, was also able to learn a
certain rhythmic regularity, which given the lack of fixed
meter in the generated music indicates the efficacy of the
character-level text representation.
The harmony generating model shows very interesting
results, as the chords are almost always consonant
with the melody, and despite them being predicted
individually, a sense of movement is still obtained.

6 Future work

Work is currently being done to set up the TheoryTab
dataset for use with the model. The topology of
the networks might have to be complexified, as this
dataset has more than twice as many characters and
chord labels as the one used previously. This dataset
also provides metrics such as melodic complexity or
chord-melody tension for every piece. Those metrics will
be used to separate the dataset into several subsets as
an experiment to determine what factors would be more
desirable for training.

One of the most important next steps will be the
implementation of the melody generator as a hierarchical
LSTM. Such a model would be able to learn the structure
of a melody, such as note → motif → phrase. This will in
turn provide more consistent use of motifs, as well as help
provide a sense of overall structure in melody generation,
thereby making generated melodies sound more natural
and purposeful.

Another important next step is the implementation
of chord embeddings, generated from latent semantic
analysis of the chord labels. This will greatly help
improve the training of the harmony generator, as well
as generation results.

Another improvement to harmony generation would
be a better snippet cutting algorithm. An algorithm
that detects motifs or phrases within a melody and cuts
it accordingly would provide a more natural rhythm to
chord progressions than simply cutting every measure of
4/4.

Finally, tempo will also have to implemented as a
feature. This will most likely involve an additional neural
model that would predict a corresponding tempo for a
given melody.
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[14] Briot, Jean-Pierre, Gaëtan Hadjeres and François
Pachet (2017). ”Deep Learning Techniques for Music
Generation - A Survey.” ArXiv abs/1709.01620

[15] Levine, Nathan J. (2015), ”Exploring Algorithmic
Musical Key Recognition”. CMC Senior Theses. Paper
1101.



[16] T. Jiang, Q. Xiao and X. Yin, ”Music Generation
Using Bidirectional Recurrent Network,” 2019 IEEE
2nd International Conference on Electronics Technology
(ICET)


